

BAGALKOT UNIVERSITY

Mudhol Road, Jamkhandi – 587301 Dist: Bagalkote

PROGRAM /COURSE STRUCTURE AND SYLLABUS

as per the Choice Based Credit System (CBCS) designed in accordance with

Learning Outcomes-Based Curriculum Framework (LOCF) of National Education Policy (NEP) 2020

for

B.A. Statistics

For the Academic Year 2024-25

As Per NEP – 2020 and Adapted from RCU Belagavi Applicable from the Academic Year 2024-25

B.A. SEMESTER-IV										
Cate	Course code	Title of the Paper	Marks		Teaching hours/week			Credit	Duratio n of	
gory			IA	SEE	Total	L	Т	Ρ		exams (Hrs)
L7		Kannada Functional Kannada	40	60	100	4	-	-	3	2
L8		English Hindi Sanskrit Arabic Urdu	40	60	100	4	-	-	3	2
DSC4	126BAB04STADSC0 7T	ANOVA and Design of Experiments	40	60	100	3	-	-	3	2
	126BAB04STADSC0 8T	Regression Analysis and Econometrics	40	60	100	3	-	-	3	2
DSC4	Another Department Code	Another Department	40	60	100	4	-	-	4	2
2501		Course Title	40	60	100	-	-	4	2	2
AECC	126COM03XXXAE C03T	Constitution of India	20	30	50	1	-	2	2	2
VBC7	126COM04XXXVB C10B	Physical Education- Sports	25	-	25	-	-	2	1	-
VBC8	126COM04XXXVB C09B	NCC/NSS/R& RS&G) / Cultural	25	-	25	-	-	2	1	-
		Total Marks 7		700	Semester Credits		22			

Semester-IV

Course: BA STATISTICS Discipline Specific Course (DSC)

The course STATISTICS in IV semester has two papers (Paper VII & VIII) for 06 credits: Each paper has 03 credits. Both the papers are compulsory. Details of the courses are as under.

Course No.7 (Paper-I): Title of the Course (Paper-I): **126BAB04STADSC07T Title of Paper: ANALYSIS OF VARIANCE AND DESIGN OF EXPERIMENTS**

Year	II	Course Code: 126BAB04STADSC07T			Credits	03
Sem.	IV	Course Title: Title of Paper: ANALYSIS OF VARIANCE AND DESIGN OF EXPERIMENTS				42
Course Pre-requisites, if any NA			NA			
Formative Assessment Marks: 40			Summative Assessment Marks: 60	Duration of ESA :.03 hrs.		

Course Outcome (CO):

After the successful completion of the course, the students will be able to:

- **CO 1** : Develop strategic plans for experimentation in scientific research projects.
- **CO 2**: Apply the principles of Design of Experiment to generate experimental designs.
- **CO 3 :** Develop problem solving skills for the application of Design of experiments to Agriculture and controlled laboratory experiments.

Syllabus-Course 7: 21BA4STSDSCT1: Title of Paper: ANALYSIS OF	Total Hrs: 42
VARIANCE AND DESIGN OF EXPERIMENTS	
Unit-I Analysis of Variance: One-Way and Two-way Classification	18 hrs
Definition of analysis of variance and its basic assumptions. Meaning of assignable and chance variations. ANOVA for one-way classified data-definition, linear mathematical model, assumptions, statement of hypothesis, splitting up of total sum of squares into various component sum of squares, degrees of freedom and ANOVA table. Simple numerical problems one-way classified data. Analysis of variance for two-way classification – definition, linear mathematical model, assumptions, statement of hypothesis, splitting up of total sum of squares into various component sum of squares. Degrees of freedom and ANOVA table. Simple numerical problems on two way classified data.	
Unit-II Design of Experiments: Completely Randomized Design	12 hrs
Definition of terms - Experiment, treatment, experimental unit,	
experimental material, yield, block, precision, experimental error, uniformity trials,	
and efficiency. Basic principles of design of experiments - Replication,	
Randomization and Local control. Completely Randomized Design (CRD) -	
definition, layout, linear mathematical model, assumptions, hypothesis, splitting up of	

sum of squares into various component sum of squares, degrees of freedom and	
ANOVA table. Merits, demerits and applications of CRD. Simple numerical	
problems.	
Unit-III Randomized Block Design	12 hrs
Introduction and definition of Randomized Block Design (RBD), layout, linear	
mathematical model, assumptions, statistical hypothesis, splitting up of total sum of	
squares into various component sum of squares, degree of freedom, and ANOVA	
table. Merits and demerits of RBD. Applications of RBD. Comparison between	
CRD and RBD. Simple problems.	

Books recommended.

1. Das, M.N. and Giri, N.C. (1986). Design and Analysis of Experiments, II Edition Wiley Eastern Ltd., New Delhi

2. Goon, A.M., Gupta, M.K. and Dasgupta, B. (1998). Fundamentals of Statistics, Vol. II, The world Press Pvt. Ltd. Kolkatta.

3. Gupta S. P. (2021). Statistical Methods, Sultan Chand and Sons, New Delhi, 46th edition.

4. Gupta S. C. and V. K. Kapoor (2018). Fundamentals of Applied Statistics, Sultan Chand, New Delhi.

5. Mukhopadhaya, P. (2011). Applied Statistics, Books and Allied Ltd.

6. Gani S. G.(2003). Sankhyshastra and Ganakayantra. Udaya Ravi Publications, Bijapur.

Semester – IV

Course : BA STATISTICS Discipline Specific Course (DSC)

Course No.-8 (Paper No. II): Title of the Course: REGRESSION ANALYSIS AND ECONOMETRICS

Year	II	Course Code: 126BAB04STADSC08T			Credits	03
Sem.	IV	Course Title: Title of Paper: REGRESSION ANALYSIS AND ECONOMETRICS			Hours	42
Course Pre-requisites, if any NA						
Formative Assessment Marks: 40			Summative Assessment Marks: 60	Duration of ESA:.03 hrs.		

Course Outcome (CO):

After completion of the course, students will be able to:

- **CO1**: Provide a wider and deeper exposure to the econometric techniques and their application to the discipline of Economics.
- **CO 2 :** Gain an understanding of how to solve problems using econometrics that are common to economic modeling.
- **CO 3 :** Develop ability to accurately translate complex economic problems into models and so as to solve them by applying econometric techniques.

Syllabus-Course 8: 21BA4STSDSCT2: Title- REGRESSION ANALYSIS AND ECONOMETRICS	Total Hrs: 42
Unit-I: Introduction to Econometrics and Simple Regression Analysis	18 hrs
Econometrics – definitions – scope – methodology – types. Quantification of	
hypothetical linear relationship using appropriate data. Two variable regression	
model, assumptions, method of least squares properties. maximum likelihood method,	
testing of hypotheses using point and interval estimates, forecasting solving problems	
using SPSS.	
Unit-II : Multiple Regression Analysis	12 hrs
Nonlinear relationships – transformation of variables – functional forms – three variable	
regression model – applications using SPSS.	
General linear model (matrix approach) - specification - OLS estimators -The	
properties of the estimated regression coefficients, hypothesis testing and the	
construction of confidence intervals of the regression model, problems.	
Unit-III: Problems in regression analysis	12 hrs

Violation of classical assumptions – multicollinearity – autocorrelation — problems – causes – consequences – remedial measures – model specification and diagnostic testing.

Books recommended.

- 1. Damodar N. Gujarathi (2009). Basic Econometrics, New Delhi: Tata McGraw Hill
- 2. Companies Johnston, J. (1972). Econometric Methods, 2nd Edition, McGraw Hill International.
- 3. Koutsoyiannis, A. (2004). Theory of Econometrics, 2nd Edition, , Palgrave Macmillan Limited
- 4. Maddala, G.S. and Lahiri, K. (2009). Introduction to Econometrics, 4th Edition, John Wiley & Sons

5. G.M.K. Madanani (1980). Introduction to Econometrics, second edition, Oxford & IBH Publishing company, New Delhi.

6. Gupta, S.C. and Kapoor, V. K. (2020). Fundamentals of Applied Statistics, Sultan Chand & Sons, New Delhi.