

BAGALKOT UNIVERSITY

Mudhol Road, Jamkhandi – 587301 Dist: Bagalkote

PROGRAM /COURSE STRUCTURE AND SYLLABUS Of

MICROBIOLOGY

IV SEMESTER

BACHELOR OF SCIENCE (MICROBIOLOGY)

As Per NEP – 2020 and Adapted from RCU Belagavi Applicable from the Academic

Year 2024-25

SEMESTER-IV										
Category	Course code	Title of the Paper	Marks		Teaching hours/we ek		Cred	Durati on of		
			IA	SE E	T)t al	L	Τ	Р		(Hrs)
		Kannada								
L7		Functional Kannada	40	60	100	4	-	-	3	2
		English Hindi Sanskrit			100					
L8		Arabic Urdu	40	60		4	-	-	3	2
DSC4	126BSC04MICDSC07T	Microbial Enzymology and Metabolism	40	60	100	4	-	-	4	2
DUCT	126BSC04MICDSC08L	Microbial enzymology & Metabolism lab	25	25	50	_	-	4	2	4
DSC4	Another Department	Another Department	40	60	100	4	-	-	4	3
	Code	Course Title	25	25	50	-	-	4	2	3
SEC	126COM03XXXSEC03T	Artificial Intelligence	20	30	50	1	-	2	2	2
VBC7	1126COM04XXXVBC08B	Yoga/ Sports	25	-	25	-	-	2	1	-
VBC8	126COM04XXXVBC09B	H&W, /NCC/N SS/R&R/CA	25	-	25	-	-	2	1	-
			Total N	larks	600	Ś	Seme Cre	ster dits	22	

Semester-4: BSc Microbiology (Basic/Hons)

Course code: 126BSC04MICDSC07T

Paper Title: Microbial Enzymology and Metabolism

Program Name	BSc Microbiology			Semester	Fourth Sem		
Course Title	Microbial Enzymology and Metabolism						
Course No. MBL:104		DSC-4T		No. of Theory Credits	4		
Contact hours 56 hrs			Duration of ESA/Exam 2 Hours				
Formative Assess	sment Marks	40		Summative Assessment Man			

Course Pre-requisite (s):.

Course Outcomes (COs): At the end of the course the student should be able to:

- 1. Differentiating concepts of chemoheterotrophic metabolim and chemolithotrophic metabolism.
- 2. Describing the enzyme kinetics, enzyme activity and regulation.
- 3. Differentiating concepts of aerobic and anaerobic respiration and how these are manifested in the form of different metabolic pathways in microorganisms

Content				
Unit–I	14 Hrs			
Metabolism of Carbohydrates				
Chemo heterotrophic Metabolism- Anaerobic respiration and fermentation				
Concept of aerobic respiration, anaerobic respiration and fermentation. Sugar degradation				
pathways i.e. EMP, ED, Pentose phosphate pathway, Phosphoketolase pathway. TCA cycle.				
Fermentation - Fermentation balance, concept of linear and branched fermentation pathways.				
Fermentation pathways: Alcohol fermentation and Pasteur effect; Butyric acid and Butanol-				
Acetone Fermentation, Mixed acid and 2,3-butanediol fermentation, Propionic acid Fermentation				
(Succinate pathway and Acrylate pathway), acetate Fermentation				
Chemolithotrophic Metabolism: Chemolithotrophy - Hydrogen oxidation, Sulphur oxidation, Iron				
oxidation, Nitrogen oxidation.				
Anaerobic respiration with special reference to disimilatory nitrate reduction and sulphate				
reduction.				

Unit -II	14 Hrs				
. Metabolism of amino acids, nucleotides and lipids					
1. Nitrogen Metabolism					
Introduction to biological nitrogen fixation Ammonia assimilation. Assimilatory nitrate					
reduction, dissimilatory nitrate reduction, denitrification					
2. Biosynthesis of ribonucleotides and deoxyribonucleotides					
The de novo pathway. Regulation by feedback mechanisms. Recycling via the salvage					
pathway					
3. Amino acid degradation and biosynthesis					
4. Lipid degradation and biosynthesis					
5. Metabolism of one carbon compounds: Methylotrophs :i. Oxidation of methane,					
methanol, methylamines; ii. Carbon assimilation in methylotrophic bacteria and yeasts					
Methanogens: i. Methanogenesis from H ₂ , CO ₂ , CHOH, HCOOH, methylamines; ii.					
Energy coupling and biosynthesis in methanogenic bacteria Acetogens: Autotrophic					
pathway of acetate synthesis					
6. Metabolism of two-carbon compounds:Acetate: i. Glyoxylate cycle. Acetic acid					
bacteria: Ethanol oxidation, sugar alcohol oxidation. Glyoxylate and					
glycolatemetabolism: i. Dicarboxylic acid cycle, ii. Glycerate pathway iii. Beta					
hydroxyaspartate					
Unit -III	14 Hrs				
Basics of Enzymes					
Definitions of terms – enzyme unit, specific activity and turnover number, exo/					
endoenzymes, constitutive/ induced enzymes, isozymes. Monomeric, Oligomeric and					
Multimeric enzymes.					
Multienzyme complex: pyruvate dehydrogenase; isozyme: lactate dehydrogenase.					
Ribozymes, abzymes					
Structure of enzyme : Apoenzyme and cofactors, prosthetic group-TPP, coenzyme, NAD, metal cofactors.					
Classification of enzymes, Mechanism of action of enzymes: active site. transition state					
complex and activation energy. Lock and key hypothesis and Induced Fit hypothesis.					
Multisubstrate reactions -Ordered, Random, Ping-pong.					
Enzyme catalysis: Catalytic mechanisms with type examples. catalytic mechanisms and					
testing - Serine proteases and Lysozyme.					
nit –IV	14 Hrs				
nzyme Kinetics and Regulation					
nzyme Kinetics: Kinetics of one substrate reactions. i. Equilibrium assumptions ii. Steady					
ate assumptions iii. Lineweaver-Burk, Hanes-Woolf, Eadie-Hofstee equations and plots.					
Kinetics of enzyme inhibition. Competitive, non-competitive and uncompetitive inhibition.Effect of changes in pH and temperature on enzyme catalysed reaction. Kinetics of two substrate reactions. Pre steady state kinetics. Kinetics of immobilized enzymes Enzyme regulation: Allosteric enzyme - general properties, Hill equation, KoshlandNemethy and Filmer model, Monod Wyman and Changeux model. Covalent modification by various mechanisms. Regulation by proteolytic cleavage - blood coagulation cascade. Regulation of					
				echanisms. Regulation by proteorytic cleavage - blood coagulation cascade. Regulation of	
				ulti- enzyme complex- Pyruvate dehydrogenase. Feedback inhibition. HIV enzyme	

Microbiology lab contents –Semester-4 Course code: 126BSC04MICDSC08L Paper title: Microbial Enzymology and Metabolism

Course Microbial Enzymolo		logy and Metabolism	Practical Credits	2				
Title	Lab							
Course	MBL:104 DSC-4P		Contact hours	56				
No.								
	Content							
1. Handling of micropipettes and checking their accuracy								
2. Isc	2. Isolation of cholesterol and lecithin from egg yolk							
3. Ide	3. Identification of fatty acids and other lipids by TLC/GC							
4. De	4. Determination of degree of unsaturation of fats and oils							
5. Isc	lation of lactose from	n bovine milk						
6. Es	6. Estimation of total sugars by the phenol-sulphuric acid method							
7. Es	7. Estimation of DNA - DPA method & UV absorbance method							
8. Estimation of RNA (Orcinol method)								
9. Isc	9. Isolation of glutamic acid from gluten							
10. Determination of molar absorption coefficient (ϵ) of l-tyrosine								
11. Determination of the isoelectric point of the given protein								
12. Estimation of polyphenols/ tannins by Folin- Denis method								
13. Chemotaxis of <i>Pseudomonas</i>								
14. Demonstration of alcoholic fermentation								
15. Effect of variables on enzyme activity (amylase): a. Temperature b. pH c. substrate concentration d. Enzyme concentration e. Determination of Km of amylase (LineweaverBurke plot; Michaelis-Menton graph)								

Practical assessment

Assessment							
Formative assessme	ent	Summative Assessment					
Assessment	Weightage in Marks	Practical Exam	Total Marks				
Occasion / type							
Record	5						
Test	10						
Attendance	5	25	50				
Performance	5						
Total	25	25					