

# BAGALKOT UNIVERSITY JAMKHANDI

# PROGRAM /COURSE STRUCTURE AND SYLLABUS For

# Bachelor of Science with PHYSICS I and II Semester

w.e.f. Academic Year 2024-25 and onwards

### **PROGRAM STRUCTURE**

Syllabus and Credits Structure under Choice Based Credit System [CBCS] General Degree for the Three Years B.Sc. with Physics Undergraduate Programme with effect from 2024-25

|          |                          | First S                                      | emeste                | r B.Sc | . With                  | Physic       | s Scl         | hem                              | e                          |   |                                                                  |
|----------|--------------------------|----------------------------------------------|-----------------------|--------|-------------------------|--------------|---------------|----------------------------------|----------------------------|---|------------------------------------------------------------------|
| Category | Course<br>code           | Title of the<br>Paper                        | Marks<br>IA SEE Total |        | Teaching<br>hours/ week |              | Credi<br>ts   | Durat<br>ion of<br>Exam<br>(Hrs) | Teaching<br>Departm<br>ent |   |                                                                  |
| L1       |                          | Language 1                                   | 20                    | 80     | 100                     | 4            | -             | -                                | 3                          | 3 | -                                                                |
| L2       |                          | Language 2                                   | 20                    | 80     | 100                     | 4            | -             | -                                | 3                          | 3 | -                                                                |
| Major    | 2A1PHYM01T               | Mechanics and<br>Properties of<br>matter     | 20                    | 80     | 100                     | 4            | -             | -                                | 3                          | 3 | Physics                                                          |
|          | 2A1PHYM01L               | Mechanics and<br>Properties of<br>matter Lab | 10                    | 40     | 50                      | -            | -             | 4                                | 2                          | 3 | Physics                                                          |
| Major    |                          | Major<br>Subject 2                           | 20                    | 80     | 100                     | 4            | -             | -                                | 3                          | 3 |                                                                  |
|          |                          | Practical                                    | 10                    | 40     | 50                      | -            | -             | 4                                | 2                          | 3 |                                                                  |
| Major    |                          | Major<br>Subject 3                           | 20                    | 80     | 100                     | 4            | -             | -                                | 3                          | 3 |                                                                  |
|          |                          | Practical                                    | 10                    | 40     | 50                      | -            | -             | 4                                | 2                          | 3 |                                                                  |
|          | 2S1XXXC01T<br>2S1XXXC02T | Constitution<br>al Values/<br>Environment    | 10                    | 40     | 50                      | 2            | -             | -                                | 2                          | 2 | Constitutional<br>Values:<br>Political<br>Science<br>Environment |
|          |                          | Studies                                      |                       |        |                         |              |               |                                  |                            |   | al Studies:<br>Chemistry/<br>/Geography/<br>Botany               |
|          |                          | ·                                            | Total                 | Marks  | 700                     | Seme<br>Crea | ester<br>lits |                                  | 23                         |   |                                                                  |

#### Second Semester B.Sc. Physics Scheme

|          | SEMESTER-<br>II    |                                   |       |         |                            |           |           |                      |                        |       |                                                              |
|----------|--------------------|-----------------------------------|-------|---------|----------------------------|-----------|-----------|----------------------|------------------------|-------|--------------------------------------------------------------|
| Category | Cours<br>e<br>code | Title of the                      | Marks |         | Teaching<br>hours/<br>week |           | Credits   | Duration<br>of exams | Teaching<br>Department |       |                                                              |
|          |                    | Paper                             | IA    | SE<br>E | Total                      | L         | Т         | Ρ                    |                        | (113) |                                                              |
| L3       |                    | Language 3                        | 20    | 80      | 10<br>0                    | 4         | -         | -                    | 3                      | 3     | -                                                            |
| L4       |                    | Language 4                        | 20    | 80      | 10<br>0                    | 4         | -         | -                    | 3                      | 3     | -                                                            |
| Major    | 2A2PHYM02T         | Electricity &<br>Magnetism        | 20    | 80      | 10<br>0                    | 4         | -         | -                    | 3                      | 3     | Physics                                                      |
|          | 2A2PHYM02L         | Electricity &<br>Magnetism<br>Lab | 10    | 40      | 50                         | -         | -         | 4                    | 2                      | 3     | Physics                                                      |
| Major    |                    | Major<br>Subject<br>2             | 20    | 80      | 10<br>0                    | 4         | -         | -                    | 3                      | 3     |                                                              |
|          |                    | Practical                         | 10    | 40      | 50                         | -         | -         | 4                    | 2                      | 3     | <br><br>                                                     |
| Major    |                    | Major<br>Subject<br>3             | 20    | 80      | 10<br>0                    | 4         | -         | -                    | 3                      | 3     |                                                              |
|          |                    | Practical                         | 10    | 40      | 50                         | -         | -         | 4                    | 2                      | 3     | <br><br>                                                     |
|          | 2S1XXXC01T         | Constitutional<br>Values/         | 10    | 40      | 50                         | 2         | -         | -                    | 2                      | 2     | Constitutional<br>Values:<br>Political Science               |
|          | 2S1XXXC02T         | Environment<br>Studies            |       |         |                            |           |           |                      |                        |       | Environmental<br>Studies:<br>Chemistry/Geogra<br>phy/ Botany |
|          |                    | Tota                              | al Ma | arks    | 700                        | Ser<br>Cr | ne:<br>ed | ster<br>its          | 23                     |       |                                                              |

| Year        | Ι      | Course Code: 2A1                                             | PHYM01T                                                         |                     | Credits       | 03  |
|-------------|--------|--------------------------------------------------------------|-----------------------------------------------------------------|---------------------|---------------|-----|
| Sem.        | 1      | Paper Title: Mecha                                           | anics and Properties of Matter                                  |                     | Hours         | 52  |
| Internal As | ssessm | ent Marks: 20                                                | External Assessment Marks: 80                                   | Duration<br>Exam: 0 | ı of<br>3hrs. |     |
| Unit No.    |        | Course content                                               |                                                                 |                     | Hour          | s   |
|             |        | Conservation La                                              | aws:                                                            |                     |               |     |
| Unit 1      | I      | Law of conservation                                          | n of linear momentum (statement). Centre                        | ;                   |               |     |
|             |        | of mass & Expr                                               | essions for position vector, velocity,                          | ,                   |               |     |
|             |        | acceleration & forc                                          | e of centre of mass. Distinction between                        | l                   |               |     |
|             |        | laboratory frame of                                          | f reference and centre of mass frame of                         | 2                   |               |     |
|             |        | reference. Concept                                           | t of elastic and inelastic collisions.                          |                     |               |     |
|             |        | Derivation of final v                                        | velocities in case of elastic collision in (i)                  | )                   |               |     |
|             |        | laboratory frame of                                          | f reference (ii) centre of mass frame of                        |                     |               |     |
|             |        | reference. Derivation                                        | on of final velocities in case of inelastic                     | ,                   |               |     |
|             |        | collision in (i) labo                                        | pratory frame of reference (ii) centre of                       | 2                   | 13 Hou        | ırs |
|             |        | mass frame of refer                                          | rence. Conservation of linear momentum                          | l                   |               |     |
|             |        | in case of variable mass. Principle of rocket and derivation |                                                                 |                     |               |     |
| for equatio |        | for equation of mot                                          | ion for single stage rocket. Necessity of                       | 2                   |               |     |
|             |        | multistage rocket (Qualitative). Basics of angular momentum  |                                                                 |                     |               |     |
|             |        | and torque, relation                                         | n between angular momentum & torque                             | •                   |               |     |
|             |        | (qualitative). Law of conservation of angular momentum       |                                                                 |                     |               |     |
|             |        | with examples. Con                                           | ncept of work & power in terms of line                          | •                   |               |     |
|             |        | integral. Law of                                             | conservation of energy. Work energy                             | ,                   |               |     |
|             |        | Principle.                                                   |                                                                 |                     |               |     |
|             |        | Gravitation:                                                 |                                                                 |                     |               |     |
| Unit I      | Ι      | Newton's law of                                              | Gravitation (statement). Expressions for                        | r                   |               |     |
|             |        | escape velocity a                                            | nd orbital velocity. Kepler's laws o                            | f                   |               |     |
|             |        | planetary motion. I                                          | Derivation for Kepler's 2 <sup>nd</sup> and 3 <sup>rd</sup> law |                     |               |     |
|             |        | Concept of Satell                                            | ite, derivation for binding energy of                           | f                   | 13 Hou        | ırs |
|             |        | satellite. Artificial S                                      | Satellite: Geostationary satellite and polar                    | r                   |               |     |
|             |        | orbit satellite with d                                       | lifferent types of orbits (qualitative).                        |                     |               |     |
|             |        |                                                              |                                                                 |                     |               |     |
|             |        |                                                              |                                                                 |                     |               |     |

|          | Rigid Body Dynamics.                                                                                                         |                 |  |  |  |  |
|----------|------------------------------------------------------------------------------------------------------------------------------|-----------------|--|--|--|--|
|          | Moment of Inertia, Radius of Gyration, Statements of theorem                                                                 |                 |  |  |  |  |
|          | of parallel axis and theorem of perpendicular axis. Theory of                                                                |                 |  |  |  |  |
|          | compound pendulum. Theory of flywheel and its applications.                                                                  |                 |  |  |  |  |
| Unit III |                                                                                                                              |                 |  |  |  |  |
|          | LIASUCILY:<br>Statement of Hook's law Behavior of wire under stress                                                          |                 |  |  |  |  |
|          | Modulus of elasticity Derivation of expression for relations                                                                 |                 |  |  |  |  |
|          | hatween electic constants. Derivation of work done per unit                                                                  |                 |  |  |  |  |
|          | volume in a deforming body. Derivation of twisting couple                                                                    | 12.11           |  |  |  |  |
|          | of avlindrical rod or wire. Torsion pendulum, Derivation for                                                                 | 13 Hours        |  |  |  |  |
|          | time period of terrier pendulum Derivation of Voung's                                                                        |                 |  |  |  |  |
|          | underlag by heading of hear supported of its and and lagded                                                                  |                 |  |  |  |  |
|          | modulus by bending of beamsupported at its ends and loaded                                                                   |                 |  |  |  |  |
|          | at middle.                                                                                                                   |                 |  |  |  |  |
| Unit IV  | Surface tension:<br>Introduction to surface tension, derivations for Pressure                                                |                 |  |  |  |  |
|          | difference across a curved liquid surface and expression for                                                                 |                 |  |  |  |  |
|          | rise of liquid in a capillary tube. Effect of temperature and                                                                |                 |  |  |  |  |
|          | impurity on surface tension. Examples.                                                                                       |                 |  |  |  |  |
|          |                                                                                                                              |                 |  |  |  |  |
|          | Viscosity:                                                                                                                   | 13 Hours        |  |  |  |  |
|          | Introduction to viscosity, streamline and turbulent flow.                                                                    |                 |  |  |  |  |
|          | Derivation of Poiseuelli's formula for the flowof viscous fluid                                                              |                 |  |  |  |  |
|          | through a narrow tube. Motion of body in a viscous medium-                                                                   |                 |  |  |  |  |
|          | Stoke's law with derivation and expression for terminal                                                                      |                 |  |  |  |  |
|          | velocity example: velocity of rain drop                                                                                      |                 |  |  |  |  |
|          | <b>REFERENCE BOOKS</b>                                                                                                       | I               |  |  |  |  |
|          | 1. Fundamentals of Physics- R.Resnik, D. Halliday and Walke                                                                  | r; Wiley (2001) |  |  |  |  |
|          | <ol> <li>Physics-Classical and Modern, FJ Keller, E Gettys and J J S<br/>McGraw Hill Second RevisedEdition (1993)</li> </ol> | kove,           |  |  |  |  |
|          | <ul> <li>3) Classical Mechanics-K N Sreenivasa Rao, Universities Press- Orient<br/>Longman (2003 ed)</li> </ul>              |                 |  |  |  |  |
|          | <ul> <li>4) Concepts of Physics Vol (1)-H C Verma, Bharathi Bhavan Publishers, 2004<br/>Edition</li> </ul>                   |                 |  |  |  |  |
|          | <ul> <li>5) University Physics- F W Sears, M W Zemansky &amp; H D Young, Pearson Education First ed. (2014)</li> </ul>       |                 |  |  |  |  |
|          | 6) Mechanics- J C Upadhaya, Himalaya (2014 ed)                                                                               |                 |  |  |  |  |
|          | 7) Properties of Matter- J C Upadhaya, Himalaya (2014 ed)                                                                    |                 |  |  |  |  |
|          | 8) Mechanics- Berkeley Physics Course                                                                                        |                 |  |  |  |  |

| Vol(1)- SI units Charles Kittel etal,                                                                       |
|-------------------------------------------------------------------------------------------------------------|
| McGrawHill Education (India) 2e (2011).                                                                     |
| <ol> <li>Elements of Properties of matter – D S Mathur, S.chand(GL) 7 Co Ltd, Dehi<br/>1ed(2010)</li> </ol> |
| 10) Properties of Matter - Brijlal & Subramanyam, S Chand & Co, (2002)                                      |
| 11) Newtonian Mechanics- A P French, Nelson & Sons UK, (1971)                                               |
| 12) Mechanics & Thermodynamics, G Basavaraju & Dipan Ghosh,<br>McGrawHill Education India) 1ed(1985)        |
| 13) A treatise on general properties of matter, Sengupta and                                                |
| Chatterjee, New Central Book AgencyPvt Ltd, Calcutta (7 <sup>th</sup>                                       |
| Revised edition -2010)                                                                                      |
| 14) Advanced analytical Dynamics: Dynamic of rigid                                                          |
| body, Utpal Chatterjee, AcademicPublishers, first edition,(2016).                                           |
| 15) Theory of mechanics, kinematics and Dynamics : V. R.                                                    |
| Gupta, I K International publishinghouse Pvt. Ltd, (2013).                                                  |
| 16) Dynamics of Rigid Body : A. K. Sharma, Discovery Publishing<br>Group,(2007).                            |
| 17) Properties of matter : R. Murugeshan, S Chand & Co Ltd Publication.                                     |
| 18) Theory of Elasticity : P. N. Chandramouli, Yes Dee publishers(2017).                                    |
| 19) An introduction to the theory of elasticity : R. J. Atkin & N. Fox, Dover Publications Inc.(2005).      |
| 20) Theory of elasticity : Dr. Sadhu Singh, Khanna publishers, (1978).                                      |
| 21) B.Sc Physics - C. L. Arora.                                                                             |
| 22) Mechanics, S P Taneja, R Chand & Co New Delhi                                                           |

|                       | Paper Code: 2A1PHYM01L<br>Paper Title: Mechanics and Properties of Matter                                                                                                          | Lab                                                           |
|-----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Lab Hours<br>/week: 4 | Formative Assessment Marks: 10<br>Summative Assessment Marks:40<br>Total Marks= 50                                                                                                 | Credits: 2<br>Total Teaching<br>hours :50                     |
| Syllabus              |                                                                                                                                                                                    |                                                               |
| 1. E<br>(r            | rror analysis, data analysis technique and graphing tech nandatory).                                                                                                               | nique to be learnt                                            |
| 2. N                  | Ioment of Inertia of Fly wheel                                                                                                                                                     |                                                               |
| 3. Y                  | oung's modulus (Y) by Cantilever- Load Vs depression                                                                                                                               | n graph.                                                      |
| 4. Y                  | oung's modulus (Y) by uniform bending- Load Vs dep                                                                                                                                 | ression graph.                                                |
| 5. E                  | Bar pendulum- determination of g                                                                                                                                                   |                                                               |
| 6. N                  | Modulus of rigidity by Torsional pendulum                                                                                                                                          |                                                               |
| 7. S                  | Spring Constant by Flat spiral Spring.                                                                                                                                             |                                                               |
| 8. V                  | refication of parallel axis theorem of Moment of Inerti                                                                                                                            | a.                                                            |
| 9. V                  | erification of perpendicular axis theorem of Moment of                                                                                                                             | Inertia.                                                      |
| 10. \                 | /erification of Hook's law.                                                                                                                                                        |                                                               |
| 11. S                 | earle's double bar method to determine Young's Modu                                                                                                                                | lus.                                                          |
| 12. T                 | orsional pendulum- to determine C and rigidity modulu                                                                                                                              | s.                                                            |
| 13. T                 | o determine rigidity modulus by dynamic method.                                                                                                                                    |                                                               |
| 14. S                 | urface tension by Quincke's method.                                                                                                                                                |                                                               |
| 15. C                 | oefficient of viscosity by Stoke's method.                                                                                                                                         |                                                               |
| Note :                |                                                                                                                                                                                    |                                                               |
| 1. Exp                | eriments are of three hours duration.                                                                                                                                              |                                                               |
| 2. Min                | imum of eight experiments to be performed.                                                                                                                                         |                                                               |
|                       | References                                                                                                                                                                         |                                                               |
| 1.                    | B Saraf etc, - Physics through experiments, Vikas Publicatio                                                                                                                       | ns ( <b>2013</b> )                                            |
| 2.                    | D P Khandelwal – A Laboratory Manual of Physics for                                                                                                                                |                                                               |
|                       | Undergraduate Classes, VikasPublications First ed ( <b>1985</b> )                                                                                                                  |                                                               |
| 3.<br>4.              | Advanced Practical Physics for Students – Worsnop & Flint<br>An Advanced Course in Practical Physics , D Chattopadhyay<br>New Central                                              | , Methuen & Co, London.<br>, P C Rakshit, B Saha,             |
| 5.<br>6. 1            | Book Agency (P) Limited, Kolkata, Sixth Revised Edition, (<br>BSC, Practical Physics, CL Arora, SChand & Co, New Delh<br>B.Sc. Practical Physics, Geeta Sanon R. Chand & Co. New E | <b>2002</b> )<br>i, ( <b>2007</b> ) Revised Edition.<br>Delhi |

| Year        | Ι                                                               | Course Code: 2A2                                                | РНҮМ02Т                                    |          | Credits | 03  |
|-------------|-----------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------|----------|---------|-----|
| Sem.        | 2                                                               | Paper Title: Elec                                               | tricity & Magnetism                        |          | Hours   | 52  |
| Internal As | ssessm                                                          | nent Marks: 20                                                  | External Assessment Marks: 80              | Duration | n of    |     |
|             |                                                                 |                                                                 |                                            | Exam: 0  | 3hrs.   |     |
| Unit No.    |                                                                 | Course content                                                  |                                            |          | Hours   | 8   |
|             |                                                                 | Vector Analysis                                                 | :                                          |          |         |     |
| Unit ]      | [                                                               | Scalar and Vector                                               | Products. Gradient of scalar and its ph    | ysical   |         |     |
|             |                                                                 | significance. Diver                                             | gence of vector and its physical signific  | cance.   |         |     |
|             |                                                                 | Curl of vector and                                              | its physical significance. Vector integr   | ation;   |         |     |
|             |                                                                 | line, surface & vo                                              | lume integrals of a vector field (Qualita  | ative).  |         |     |
|             |                                                                 | Gauss Divergence                                                | theorem & Stokes theorem (statement        | it and   |         |     |
|             |                                                                 | explanation).                                                   |                                            |          | 13 Hou  | ırs |
|             | Maxwell's Electromagnetic Theory:                               |                                                                 |                                            |          |         |     |
|             | Derivation of Maxwell's equations in differential form. Mention |                                                                 |                                            |          |         |     |
|             |                                                                 | of Maxwell's equ                                                | ations in integral form and their ph       | ysical   |         |     |
|             |                                                                 | significances. Der                                              |                                            |          |         |     |
|             |                                                                 | space. Transverse nature of radiation. Derivation of Poynting's |                                            |          |         |     |
|             |                                                                 | theorem.                                                        |                                            |          |         |     |
| <b></b>     | -                                                               | DC Circuit Ana                                                  | ysis:                                      |          |         |     |
| Unit I      | l                                                               | Voltage and current                                             | sources. Kirchoff's current and voltage la | ws.      |         |     |
|             |                                                                 | Derivation of Theve                                             | nin's Theorem.Derivation of Norton's       |          |         |     |
|             | Theorem Derivation of Maximum Transfer Theorem.                 |                                                                 |                                            |          |         |     |
|             |                                                                 |                                                                 |                                            |          | 13 Hou  | irs |
|             |                                                                 | <b>Transient</b> Circu                                          | its:                                       |          | 15 1100 |     |
|             |                                                                 | Theory of growth                                                | and decay of current in RL circuit. The    | ory of   |         |     |
|             |                                                                 | charging and dis                                                | charging of capacitor in RC circuit.       | Time     |         |     |
|             |                                                                 | constants of RL ar                                              | d RC circuits Measurement of high resi     | stance   |         |     |
|             |                                                                 | by leakage method                                               |                                            |          |         |     |

| Unit III |                                                                                     |           |
|----------|-------------------------------------------------------------------------------------|-----------|
| 0        | Magneto statics:                                                                    |           |
|          | Statement of Biot Savart's law. Mention of expressions for                          |           |
|          | Magnetic field at a point (i) due to a straight conductor carrying                  |           |
|          | current (ii) along the axis of the circular coil carrying current                   |           |
|          | (iii) along the axis of solenoid. Principle, construction and                       |           |
|          | theory of Helmholtz Galvanometer.                                                   |           |
|          | Magnetic Properties:                                                                |           |
|          | Magnetic intensity, Magnetic induction, Magnetic potential.                         |           |
|          | Derivation of Magnetic intensity and magnetic potential due to                      |           |
|          | dipole (magnet). Permeability and magnetic susceptibility.                          |           |
|          | Distinction between dia, para, and ferromagnetic materials.                         |           |
|          | Ampere Circuital Law (statement).                                                   |           |
|          | Electromagnetic induction:                                                          | 13 Hours  |
|          | Faraday's law of electromagnetic induction. Lenz's law. Self and mutual inductance. |           |
|          |                                                                                     |           |
|          | Definitions of average peak and rms values of AC. AC circuits                       |           |
|          | containing LR CR and their responses (using i operator)                             |           |
|          | Expressions for impedance current & phase angle in series I CR                      |           |
|          | circuit using i operator. Expressions for admittance and                            |           |
|          | condition for resonance in parallel LCP circuit using i operator                    |           |
|          | Concernt of Series recommended & perallel recommended (shormood                     |           |
|          | Concept of Series resonance & parallel resonance (sharpness,                        |           |
|          | hair power frequency, quality factor, voltage magnification).                       |           |
|          | Comparison between Series resonance & parallel resonance. De                        |           |
|          | Sauty's Bridge.                                                                     |           |
| Unit IV  | Ballistic Galvanometer; Theory of Ballistic Galvanometer                            |           |
|          | (Derivation for current and Charge). Constants of Ballistic                         |           |
|          | Galvanometer and their relationship. Condition for moving coil                      |           |
|          | galvanometer to be ballistic. Determination of self-inductance ( L                  |           |
|          | ) by Rayleigh's method.                                                             | 13 Hours  |
|          | CRO block diagram. Use of CRO in the measurement of Voltage,                        | 15 110015 |
|          | Frequency and Phase.                                                                |           |
|          | Dielectrics:                                                                        |           |
|          | Types of dielectrics (polar and non-polar molecules). Electric field                |           |
| Bagalk   | ot (E), Electric displacement (D), Electric dipole moment (p), electric             | Page      |

| polarization (P). Gauss law in dielectrics. Derivation for Relation |  |
|---------------------------------------------------------------------|--|
| between D, E and P. Derivation for relation between dielectric      |  |
| constant and electric susceptibility. Boundary conditions for E & D |  |

| <b>REFERENCE BOOKS</b>                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ol> <li>Electricity and magnetism by Brij Lal and N<br/>Subrahmanyam, Rathan PrakashanMandir,</li> </ol>                                                                                                                                                                                               |
| <ul> <li>Nineteenth Edition, 1993.</li> <li>2) Principles of Electronics by V K Mehta and<br/>Rohit Mehta, S Chand &amp; Company, Eleventh</li> </ul>                                                                                                                                                   |
| <ul> <li>Edition,2008.</li> <li>3) Fundamentals of Magnetism &amp; Electricity : d. N. Vasudeva, S Chand Publication, (2011).</li> </ul>                                                                                                                                                                |
| <ul> <li>4) Fundamentals of Electricity and<br/>Magnetism – Basudev Ghosh (Books &amp;<br/>Allied New Central Book Agency,</li> <li>Colority 2000)</li> </ul>                                                                                                                                           |
| <ul> <li>5) Electricity &amp; Magnetism : B. S. Agarwal, Kedarnath Ramnath Publication(2017).</li> <li>6) Electricity &amp; Magnetism : A. N. Matveev, Mir Publishers Moscow,(1987).</li> <li>7) Electricity and Magnetism with Electronics : Dr. K.K.Tewari, S.Chand<br/>Publications(1995)</li> </ul> |
| <ul> <li>8) Fundamentals of electric circuit theory : Dr. D.<br/>Chattopashyay &amp; Dr. P. C. Rakshit, S.Chand<br/>Publications, 7<sup>th</sup> Rev. Edn. (2006).</li> </ul>                                                                                                                           |
| <ul> <li>9) Electricity and Magnetism : John Yarwood, University Tutorial Press, (1973).</li> <li>10) Feynman Lecture series, VolII, R P Feynman et al, Narosa Publishing House,<br/>New Delhi</li> </ul>                                                                                               |
| 11) Electricity & Magnetism, N S Khare & S S Srivastava, AtmaRam & Sons, New Delhi.                                                                                                                                                                                                                     |
| <ul> <li>12) Electricity &amp; Magnetism, D L Sehgal, K L Chopra, N K Sehgal, S Chand &amp; Co,<br/>Sixth Edition, (1988).</li> <li>13) Electricity &amp; Electronics, D C Taval, Himalaya Publishing House, Sixth</li> </ul>                                                                           |
| Edition( <b>1988</b> ).<br>14) Basic Electronics & Linear Circuits, N N Bhargava, D C                                                                                                                                                                                                                   |
| Kulshrestha & SC Gupta, TMH PublishingCompany Limited, 28 <sup>th</sup> Reprint, ( <b>1999</b> ).                                                                                                                                                                                                       |
| <ul> <li>15) Fundamentals of Physics by Halliday, Resnick and</li> <li>Walker, Asian Books Private Limited, New Delhi, 5<sup>th</sup></li> <li>Edition, (1994).</li> </ul>                                                                                                                              |
| <ul> <li>16) Introduction to Electrodynamics by D J Griffiths Pearson Education (2015).</li> <li>17) Classical Electrodynamics : John David Jackson, John Wiley &amp; Sons,(2007).</li> <li>18) Electromagnetism by B B Laud 2ed.</li> </ul>                                                            |
| <ul><li>19) An Introduction to vector analysis : B. Hague, Springer Science &amp; Bussiness<br/>Media, (2012).</li></ul>                                                                                                                                                                                |
| 20) Electrical Networks, Theraja 3 <sup>rd</sup> revised edition                                                                                                                                                                                                                                        |
| 21) Circuit Theory ( Analysis & Synthesis) : A. Chankrabarti, Dhanpat Rai Publications,(1951).                                                                                                                                                                                                          |
| <ul><li>22) Electricity and Magnetism, S P Taneja, R Chand &amp; Co. New Delhi.</li><li>23) Introduction to Electromagnetic Theory, S P Taneja, R Chand &amp; Co. New Delhi.</li></ul>                                                                                                                  |

| Paper Code: 2A2PHYM02L                                                              |                |  |  |  |  |  |
|-------------------------------------------------------------------------------------|----------------|--|--|--|--|--|
| Paper Title: Electricity & Magnetism Lab                                            | )              |  |  |  |  |  |
| Lab Hours   Formative Assessment Marks: 10                                          | Credits: 2     |  |  |  |  |  |
| /week: 4 Summative Assessment Marks:40                                              | Total Teaching |  |  |  |  |  |
| Total Marks= 30                                                                     | hours:50       |  |  |  |  |  |
| Syllabus                                                                            |                |  |  |  |  |  |
| 1 Thevenin's & Norton's theorem (Ladder Network)                                    |                |  |  |  |  |  |
| 2 Thevenin's & Norton's theorem (Wheatstone's Bridge)                               |                |  |  |  |  |  |
| 3 High resistance by leakage method                                                 |                |  |  |  |  |  |
| 4 Time constant of RC circuit by charging and discharging meth                      | od.            |  |  |  |  |  |
| 5 Calibration of Ammeter using Helmholtz Galvenometer                               |                |  |  |  |  |  |
| 6 Constants of Ballistic Galvanometer                                               |                |  |  |  |  |  |
| 7 LCR series and parallel resonance circuit                                         |                |  |  |  |  |  |
| 8 De Sauty's AC bridge                                                              |                |  |  |  |  |  |
| 9 Self-Inductance by Rayleigh's method                                              |                |  |  |  |  |  |
| 10 Use of CRO to find voltage, frequency and phase.                                 |                |  |  |  |  |  |
| 11 L & C by Equal Voltage Method                                                    |                |  |  |  |  |  |
| 12 Black Box- Identify & Measure R, L & C                                           |                |  |  |  |  |  |
| 13 Anderson's Bridge to determine the self-inductance of the coil                   | (L).           |  |  |  |  |  |
| 14 Verification of Superposition Theorem                                            | × /            |  |  |  |  |  |
| 15 Verification of maximum Power Transfer Theorem                                   |                |  |  |  |  |  |
| Note :                                                                              |                |  |  |  |  |  |
|                                                                                     |                |  |  |  |  |  |
| 1. Experiments are of three hours duration.                                         |                |  |  |  |  |  |
| 2. Minimum of eight experiments to be performed.                                    |                |  |  |  |  |  |
| References                                                                          |                |  |  |  |  |  |
| 1. Physics through experiments. B Saraf etc Vikas Publications (2013)               |                |  |  |  |  |  |
| 2. D P Khandelwal – A Laboratory Manual of Physics for Undergradua                  | ate Classes,   |  |  |  |  |  |
| Vikas PublicationsFirst ed (1985)                                                   |                |  |  |  |  |  |
| 3. Advanced Practical Physics for Students – Worsnop & Flint, Methuen & Co, London. |                |  |  |  |  |  |
| 4. An Advanced Course in Practical Physics, D Chattopadhyay, P C Rakshit, B Saha,   |                |  |  |  |  |  |
| New Central BookAgency (P) Limited, Kolkata, Sixth Revised Edition, (2002)          |                |  |  |  |  |  |
| 6 B Sc Practical Physics, CE Alora, Schand & Co, New Delli, (2007) Re               |                |  |  |  |  |  |
|                                                                                     |                |  |  |  |  |  |
|                                                                                     |                |  |  |  |  |  |