

BAGALKOT UNIVERSITY

Mudhol Road, Jamkhandi-587301 Dist: Bagalkot

PROGRAM/COURSE STRUCTURE AND SYLLABUS FOR ELECTRONICS

as per the Choice Based Credit System (CBCS) designed in accordance with Learning Outcomes-Based Curriculum Framework (LOCF)

For

Bachelor of Science with ELECTRONICS (General Degree) I and II Semester

w.e.f.

Academic Year 2024-25

PROGRAM OBJECTIVES

The overall Objectives of the B.Sc. Electronics program are to:

- Provide students with learning experiences that develop broad knowledge and understanding of key concepts of electronics and equip students with advanced scientific / technological capabilities for analyzing and tackling the issues and problems in the field of electronics.
- Develop ability in students to apply knowledge and skills they have acquired to solve specific theoretical and applied problems in electronics.
- Develop abilities in students to design and develop innovative solutions for benefits of Society.
- Provide students with skills that enable them to get employment in industries or pursue Higher studies or research assignments or turn as entrepreneur.

PROGRAM OUTCOMES

- Ability to apply knowledge of Logic thinking and basic science for solving electronics related Problems.
- Ability to perform electronics experiments, as well as to analyze and interpret data.
- Ability to design and manage electronic systems or processes that conforms to a given specification within ethical and economic constraints.
- Ability to identify, formulate, solve and analyze the problems in various sub disciplines of electronics.
- Ability to use Modern Tools / Techniques.

PROGRAM STRUCTURE

Syllabus and Credits Structure under Choice Based Credit System [CBCS] General Degree for the Three Years B.Sc. with Electronics Undergraduate Programme with effect from 2024-25

First Semester B.Sc. (Electronics) Scheme

			SEI	MESTI	ER-I						
Category	Course code	Title of the	I	Marks		Teaching hours/ week			Credi ⁱ	Durat ion of	Teaching Departme
		Paper	IA	SEE	Total	L	Т	P	ts	(Hrs)	nt
L1		Language 1	20	80	100	4	-	_	3	3	
L2		Language 2	20	80	100	4	-	-	3	3	
Major	2A1ELEM01T	Network Analysis And Instrumentation	20	80	100	4	-	-	3	3	Electronics
	2A1ELEM01L	Practical I	10	40	50	-	-	4	2	3	Electronics
Major		Major Subject 2	20	80	100	4	-	-	3	3	
		Practical	10	40	50	-	-	4	2	3	
Major		Major Subject 3	20	80	100	4	-	-	3	3	
		Practical	10	40	50	-	-	4	2	3	
Common	2S1XXXC01T	Constitutional Values/	10	40	50	2	-	-	2	2	Constitutional Values: Political Science
	2517777021	studies									l Studies: Chemistry/ /Geography/ Botany
			Total	Marks	700	Seme Crec	ster lits		23		

Bagalkot University, Jamkhandi Electronics Syllabus for B.Sc.I and II semester under CBCS scheme Second Semester B.Sc. (Electronics) Scheme

	SEMESTER-II										
Categ	Course code	Title of the	Marks		Teaching hours/ week		Credits	Duration of exams	Teaching Department		
ory		Paper	IA	SE E	Total	L	Τ	Р		(Hrs)	
L3		Language 3	20	80	100	4	-	-	3	3	
L4		Language 4	20	80	100	4	-	-	3	3	
Major	2A2ELEM02T	Electronic Circuits and Special Purpose Devices	20	80	100	4	-	-	3	3	Electronics
	2A2ELEM02L	Practical II	10	40	50	-	-	4	2	3	Electronics
Major		Major Subject 2	20	80	100	4	-	-	3	3	
		Practical	10	40	50	-	-	4	2	3	
Major		Major Subject 3	20	80	100	4	-	I	3	3	
		Practical	10	40	50	-	1	4	2	3	
Common	2S1XXXC01T	Constitutional Values	10	40	50	2	-	-	2	2	Constitutional Values: Political Science
	2S1XXXC02T	Environment Studies									Environmental Studies: Chemistry/Geography / Botany
	Total Marks				700	Ser Cı	nest redi	ter ts	23		

First Semester B.Sc. (Electronics)

Course outcomes

At the end of the course the student should be able to:

- CO1: Apply the knowledge of basic circuit law and simplify the network using reduction techniques
- CO2: Analyze the circuit using Kirchhoff's and Study and analyze basic networks using network theorems in a systematic manner
- CO3: Build simple electronic circuits used in various applications
- CO4:Describe the various types of passive filters
- CO5:Students should be able to know about the use of the instruments

Paper Code: 2A1ELEM01T						
Teaching Formative Assessment Marks: 20 Total Hours: 52			Credits: 3			
Hours/week: 4		:4 Summative Assessment Marks:80				
		Total Marks= 100				
UNITS	Sy	llabus	Teaching			
			Hours			
Ι	٠	Electronic Components: Electronic passive and active	13			
		components, types and their properties, Concept of Voltage				
		and Current Sources, electric energy and power (Qualitative				
		only)				
	٠	.DC Transient Analysis: Series RC Circuit- Charging and				
		discharging with initial charge, RC time constant.				
		Series RL circuit, current at any instant during growth and decay-				
		equations (qualitative analysis only). Graphical representation, RL				
		time constant, AC applied to Series RC and RL circuits:				
		Impedance of series RC & RL circuits (qualitative study-no				
		derivations). AC applied to Series and parallel RLC circuit				
		(qualitative study-no derivations), series and parallel resonance,				
		condition for resonance, resonant frequency, bandwidth,				
		significance of quality factor, Comparison between series and				
		parallel resonance numerical problems.				
	٠	Transformer: Principle, construction and working.				
	٠	Switches: SPST, SPDT, DPST and DPDT, fuse and				
		Electromagnetic relay, MCB and ELCB, RCCB–Qualitative				
		studies only.				
	•	Problems				
II	•	Network theorems (DC analysis only): Review of				
		Kirchhoff's laws, voltage divider and current divider	13			
		theorems, open and short circuits. Superposition Theorem.				
		Thevenin's Theorem. Norton's Theorem. Reciprocity				
		Theorem. Maximum Power Transfer Theorem. Problems.				
	•	Two Port Networks: h, y and z parameters and their				
		conversion.				
	•	Problems				

First Semester B.Sc. (Electronics)

Bagalkot University, Jamkhandi Electronics Syllabus for B.Sc.I and II semester under CBCS scheme

III	• T and pi Networks, Network transformation T to pi and vice	
	versa. Characteristic impedance.	13
	• Filters -Concept of filters. Constant K-type filters- Low pass	
	filter, high pass filters. Derivation (Design impedance,	
	Characteristic impedance. Cut off Frequencies.	
	Attenuation constant and Phase constant) and design of	
	filters. Band pass filters & band elimination. (Oualitative	
	only)	
	• Problems	
IV	• Suspension Galvanometer. Torque and deflection of the Galvanometer	13
	permanent –magnet-moving mechanism	-
	 DC Ammeters, Multirange, DC ammeter DC 	
	Voltmeters, Voltmeter sensitivity, DC Mutirange	
	Voltmeter	
	• Ohmmeter: Series type ohmmeter. Shunt type ohmmeter.	
	Analog multi-meter or VOM. Digital Multimeter, Advantages	
	• Cathode Ray Oscilloscope: Block diagram, Cathode Ray	
	Oscilloscope.	
	• Problems	
	Reference Books:	
	1. Electronic Devices and circuit theory, Robert Boylstead and Louis Nashelsky, 9thEdition, 2013, PHI	
	2. Basic electronics- B.L. Theraja - S. Chand and Co. 3rd edition - 2012.	
	3. Electronics text lab manual, Paul B. Zbar.	
	4. Electric circuits, Joeseph Edminister, Schaums series.	
	5. Electric circuits Book 1, Schaums series - Syed. A. Nasar. Mc-Graw hill edition.	
	6. Basic Electronics and Linear circuits, N.N. Bhargava, D.C. Kulshresta and D.C Gupta-TMH.	
	7. Electronic devices, David A Bell, Reston Publishing Company/DB Tarapurwala Publ.	
	8. Principles of Electronics By- V.K. Mehta, S. Chand& Co.	
	9. Electronic devices, applications and Integrated circuits,	
	Mathur, Kulshreshta and Chadha, Umesh Publications.	
	10. Modern Electronic Instrumentation and Measurement techniques-	
	Albert D. Helfrick and William D. Cooper	
1		1

B.Sc. I semester Practical

Course out comes After the completion of the lab course the student will be able to:

- CO1:.Illustrate electrical network theorems.
- CO2;Evaluate time constant of RC circuits
- CO3:.Analyze network parameter for different application.
- CO4.: Design different filters
- CO5:Design the analog Voltmeter Ammeter and Ohmmeter

Paper Code: 2A	ELEM01L						
Paper Title: Pra	ctical – I						
Lab Hours	Formative Assessment Marks: 10	Credits: 2					
/week: 4	Summative Assessment Marks:40						
Total 50 hours	Total Marks= 50						
Syllabus							
Demonstration	experiments- not for evaluation						
1. To familiariz Function Ge	ze with basic electronic components (R, C, L,), digital nerator and Oscilloscope.	Multimeter,					
2. Measuremen	nt of Amplitude, Frequency & Phase difference using	Oscilloscope.					
Experiments to	be performed						
1. Series Reson	ance						
2. Verification	of Kirchhoff's Laws						
3. Verification	of (a) Thevenin's theorem and (b) Norton's theorem.						
4. Verification	of (a) Superposition Theorem and (b) Reciprocity The	eorem.					
5. Verification	of the Maximum Power Transfer Theorem.						
6. RC Circuits:	Time Constant, Differentiator, Integrator.						
7. Determination	on of hybrid parameters of a two-port network.						
8. Studyof Lov	v pass filter T/ π section.						
9. Studyof Hig	h pass filter T/ π section.						
10. Studyof Ban	d pass filter T section						
11. Studyof Ban	d Elimination filter T/ π section						
12. Conversion	of Galvanometer into Multirange voltmeter						
13. Conversion	of Galvanometer into Multirange milliammeter						
14. Design of Ol	14. Design of Ohmmeter						
Note: 1. Experiment 2. Minimum of	ts are of four hours duration of eight experiments to be performed.						

Second Semester B.Sc. (Electronics)

Second Semester B.Sc. (Electronics)

Course outcomes:

At the end of the course the student should be able to

 $CO1: \mbox{Describe the behavior of basic semiconductor devices}$

CO2: Calculate various device parameters' values from their V I characteristics.

CO3: Students should be able to bias the transistor using different biasing circuits

CO4: Describe the frequency response of BJT, JFET amplifiers and Power

Amplifiers

CO5: Explain the behavior, characteristics and applications of special purpose devices,

LED, LCD, Solar Cells, UJT, SCR, Triac and Diac.

Paper Code: 2A2ELEM02T							
	5						
Teachir Hours/v	Teaching Hours/week: 4Formative Assessment Marks: 20 Summative Assessment Marks: 80 Total Marks= 100Total Hours: 52						
UNITS		Teaching Hours					
Ι	 Jun (Id Lay Re Re tap (Do rip) HV Fil Inp onl Sw and 	Junction Diode and its applications: PN junction diode (Ideal and practical) constructions, Formation of Depletion Layer, Diode Equation and I-V characteristics. , Zener diode, Reverse saturation current, Zener and avalanche breakdown. Rectifiers - Half wave rectifier, Full wave rectifiers (center tapped and bridge), circuit diagrams, working and waveforms (Definition of TUF, PIV and expression for efficiency (η), ripple factor(γ) and voltage regulation), Comparison between HWR & FWR. Filter - Inductor filter, Capacitor filter, LC filter (Inductor Input) and π -section filter (Capacitor Input) Qualitative study only Switching Circuits: Clipping circuits (Positive, Negative					
Π	 Bip Co CE (ac Tr poi typ fee der Tra Pro 	polar Junction Transistor: Bipolar Junction, working and characteristics of and CC), relation between α , β and γ . Retive, cut off and saturation). Problems. ansistor biasing: Need for biasing, DC I and, thermal runaway, stability and stabilities of biasing– Fixed bias, Collector to dback bias, Voltage divider bias, (Expivation. advantages& disadvantages ansistor as a switch circuit and working.	inction Transistor: f three modes (CB, egions of operation oad line, operating ty factor. Different base bias, Emitter planation Q point in each case).	13			

III	• Small Signal Amplifiers: Classification of amplifiers based	13
	on different criteria, small signal CE amplifier-circuit,	
	working, frequency response.	
	• Cascaded Amplifiers: Two stage RC Coupled Amplifier	
	and its Frequency Response.	
	• Hybrid model : h-parameter, Determination of h-parameter	
	of transistor for CE configuration, derivation for Av,	
	expressions for Zin and Zout using h-parameters. Numerical problems on Ay. Zin and Zout	
	 Power amplifier: Introduction Classification of power 	
	Amplifiers Conversion efficiency of class A amplifier	
	class B amplifier and class C amplifier (Qualitative	
	only) Transformer coupled push pull amplifier	
	• FFT · Introduction FFT types IFFT construction	
	working characteristics parameters and their relationships	
	Comparison of BJT & FET.	
	• JFET Amplifier: Common Source – mode, operation and	
	frequency response	
	• MOSFET -Types, circuit symbols of depletion type	
	MOSFET (both N channel and P Channel). Circuit	
	symbols of enhancement type MOSFET (both N channel	
	and P channel).N channel enhancement type MOSFET-	
	construction, working, characteristic curves	
	• Problems	
IV	• UJT- Basic construction, equivalent circuit, intrinsic standoff	13
	ratio, working, characteristics and relaxation oscillator-	
	expression of frequency. Numerical problems.	
	• SCR-construction, working, characteristic curves, explanation	
	of working by using equivalent circuit, full wave-controlled	
	rectifier-derivations for average values of load current and	
	voltage, numerical problems.	
	• Triac and Diac – Circuit symbol, construction, working,	
	characteristic curves. Applications (mention only).	
	• LED- Circuit symbol, operation and applications (mention	
	only)	
	• LCD – Types, applications (mention only), advantages over	
	• Special purpose devices: Lunnel diode, Varactor diode, Photo diode, Dhoto transistor & Solar cell, singuit symbol, and the second	
	uloue, Photo transistor & Solar cell – circuit symbol, Working,	
	• Problems	
1		

REFERENCE BOOKS:
1. Basic electronics- B.L. Theraja - S. Chand and Co. 3rd edition -2012.
2. Electronics text lab manual, Paul B. Zbar.
3. Basic Electronics and Linear circuits, N.N. Bhargava, D.C. Kulshresta and
D.C Gupta-TMH.
4. Electronic devices, David A Bell, Reston Publishing Company/DB
Tarapurwala Publ.
5. Principles of Electronics By V.K. Mehta, S. Chand& Co.
 Electronic devices, applications and Integrate circuits, Mathur, Kulshreshta andChadha,UmeshPublications.
7. Basic electronics & linear circuits TTTI Chandigarh-Kulashresta and
Bhargava Tata McGrawhill publication
8. Electronic Devices and circuit theory, Robert Boylstead and Louis
Nashelsky, 9th Edition, 2013, PHI
9. Semiconductor devices – Kannan Kano LPE Pearson publication.
10. Electronic devices, applications and Integrated circuits, Mathur,

B.Sc. II semester Practical

Course out comes After the completion of the lab course the student will be able to:

- CO1: Describe the characteristics of basic electronic devices.
- CO2: Explain the behavior and characteristics of power devices such as UJT, SCR, etc.
- CO3: Explain about the biasing circuits
- CO4: Explain the frequency response of Transistor amplifier and FET amplifier

Paper Code: 2A2ELEM02L							
Paper Title: Practical – II							
Lab Hours/week: 4Formative Assessment Marks: 10Credits							
Total Marks= 50	Summative Assessment Marks:40						
Syllabus							
Section-A: Demonstration	experiments- not for evaluation						
Measurement of voltage, tir	ne period and frequency using C.R.O.						
Section-B: Performance Ex	periments						
1. Study of the I-V Charac	teristics of (a) P-N junction Diode, and (b)) Zener diode.					
2. Full wave bridge rectifie	er with LC/ π -section filter.						
3. Study of Clipping and C	Clamping circuits						
4. Transistor Characteristic	cs in CE mode						
5. Fixed Bias circuit using	transistor						
6. Voltage Divider Bias cir	rcuit using transistor						
7. FET characteristics							
8. CE Amplifier – frequence	cy response						
9. Common source FET an	nplifier-frequency response						
10. UJT characteristics							
11. UJI relaxation oscillator							
12. SCR characteristics.							
13. LED Characteristics							
14. Solar cell characteristics	14. Solar cell characteristics						
Note							
1 Experiments are of three	hours duration						
2 Minimum of eight experi	riments to be performed						
2. Within of eight exper	intents to be performed						

SL. No	Particulars	Marks Allotted
1.	Basic formula with description, nature of graph if any & indication of unit	04
2.	Tracing of schematic ray diagram/Circuit diagram with description	04
3.	Tabulation	04
4.	Experimental skill & connection	04
5.	Record of observation and performance of experiment	08
6.	Calculation including drawing graph	06
7.	Accuracy of result with unit	02
8.	Journal assessment	04
9.	Oral performance	04
	Total	40

Summative Assessment: Scheme of Evaluation for Practical Examination